

Brayton Solar Power Conversion System

Prepared for DOE - SAI Annual Review. 9 February 2010

By Brayton Energy, LLC 75B Lafayette Rd. Hampton, NH 03842 Jim Kesseli (603) 601 - 0450 x202 kesseli@BraytonEnergy.com

Presentation requirements

- Project Objective as stated in project SOPO.
- Timeline including all subtasks as laid out in SOPO for all phases, with completion dates for previously completed work and project completion dates for future work.
- Milestones for each phase of the project.
- Significant challenges, hang-ups, breakthroughs and/or accomplishments achieved up to current working point.
- Include work planned for the next 6-12 months

Project Outline- Brayton Solar Power Conversion System

- Budget Period 1 (Jan. 2008, Jan., 2009)
 - Detailed design and manufacturing package, long lead.
- Budget Period 2 (March, 2009 December 2009 extended to June 2010)
 - Manufacturing drawings
 - Procurement
 - Fab & lab-test PCU components
 - Fab & field test solar receiver
 - Fab & test 320 sq.m. dish (
- Budget Period 3 (June 2010- Dec. 2010)
 - Full dish-system assembly and tests

Task#	Task	Milestone
	Turboalternator-detailed thermo-	Support life analysis of >40,000
1.1	mechanical and life analyses	hrs
1.2	Hybrid solar receiver detailed design	Detailed receiver design
1.3	Final dish size specifications	Dish specification report
1.4	Update design package and BOM for cost analysis and LCOE	Bill of materials, system cost analysis, LCOE
1.5	Project Management and Reporting	Monthly and quarterly reports, Final Design Report (216 pages)
M1	Final Design Report (216 pages)	Acceptance from DOE

Task#	Task Description	Milestone
2.0	Continuation report	Revise and update BP#1 report to address SNLA issues:
2.1	Demonstrate turbine efficiencies	Experimentally verify a turbine efficiency >0.80 (*1)
2.2	Demonstrate alternator efficiencies	Experimentally verify a turbine efficiency >0.96 (*2)
2.3	Characterize control variables	Verify that 'flatness' of the system (turboalternator) efficiency (+/- 2 pts)
2.4	Turboalternator Integrity test	Operate turboalternator for >50 hours
2.5	Receiver manufacturing methods and cost	Prepare receiver manufacturing description and cost model
2.6.1	Dish reviews	Host two design reviews at Dish manufacturer (one pre-build, one after test)
2.6.2	Dish and receiver test plans	Submit draft plans to National Labs for review & comment
2.6.3	Dish test	Perform characterization testing of new prototype SolarCAT dish. The National Laboratories will be given the opportunity to support and observe the characterization and testing of this dish
2.7	Receiver test	The solar receiver efficiency goal is >86% at projected gas inlet and exit temperatures, based upon a geometric dish/aperture concentration ratio of 1800.
2.8.1	Reporting, general FAR	Reports provided in accordance with the Federal Assistance Reporting guidelines.
2.8.2	Monthly technical	A detailed report in presentation format - and oral presentation
2.8.3	Final report	Summary of SOPO results and update cost models.

Task#	Task	Milestone
	Finalize design and of power conversion	
3.1	system	Monthly design reviews
	Procure hardware and fabricate	
3.2	receiver/power conversion module	Monthly design reviews
		Installed / commissioned dish-
3.3	Install complete module	PCU module
3.4	Perform integrated system testing	Provide test results
		Monthly reports and final test
3.5	Project Management and Reporting	report
	Demonstrate solar and hybrid operation	Successful demo, update LCOE
M3	and deliver manufacturing plan.	projections

		20 08						20 09								
Task#	Task	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar
	Turboalternator-detailed thermo-															
1.1	mechanical and life analyses															
1.2	Hybrid solar receiver detailed design															
1.3	Final dish size specifications															
1.4	Update design package and BOM for cost analysis and LCOE															
1.5	Project Management and Reporting															
M1	Final Design Report (216 pages)															

		20 09							20 10								
Task#	Task	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun
2.0	Update Budget Period-1 Continuation Report.																
2.1	Demonstrate turbine efficiencies in multistage turboexpander																
2.2	Demonstrate alternator efficiencies																
2.3	Characterize control variables, using variable area turbine nozzle																
2.4	Demonstrate overall turboalternator integrity in short-term testing.																
2.5	Define receiver manufacturing methods and cost																
2.6	Dish Review, Characterization and Testing																
2.7	Characterize solar receiver performance																
2.8	Project Management and Reporting																
M2	Go/No Go report																

						20	10		
Task#	Task	Milestone	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	Finalize design and of power conversion								
3.1	system	Monthly design reviews							
	Procure hardware and fabricate								
3.2	receiver/power conversion module	Monthly design reviews							
3.3	Install complete module	Installed / commissioned dish- PCU module							
3.4	Perform integrated system testing	Provide test results							
3.5	Project Management and Reporting	Monthly reports and final test report							
	Demonstrate solar and hybrid operation	Successful demo, update LCOE							
M3	and deliver manufacturing plan.	projections							

Two products

- SolarCAT with compressed air energy storage
- 2. Dish-Brayton stand-alone dish module

Use common subassemblies:

- 320 sq. meter dish
- Advanced solar receiver
- Air-bearing mechanical system
- High-speed turbo-alternator

SolarCAT Cycle Diagram with compressed air energy storage

5 to 50 Dish-modules fed by the central compressor 185 kWe at 850W/m2 / storage system Turbo-Air exhaust alternator Recuperator **Hybrid Solar** receiver Concentrated Air inlet at night Sunlight, Day (powering) Solar concentrator Night (charging) Motor-3-way valve Compressor

Brayton engine efficiency (thermal-AC electric) has excellent part-load efficiency

Electrical Efficiency vs %Solar

Cavity Heat Loss Test

- The full-scale simulated cavity was covered with layers of insulation to minimize heat loss through conduction.
- Heaters were placed inside to provide 33.7 kW of power.
- Thermal couples record the cavity temperatures.
- Cavity is able to rotate 90 degrees
- This test successfully validated receiver thermal loss models

Turbo-Alternator Stage Test Schematic

January Rig Updates: Installed main burner and extended piping distance between burner and turbine

Stages 3 and 4 Turbo-Alternator Status

Achievements

- 1. Commissioned recuperated/hybrid combustion rig
- 2. Completed rotor dynamics check-out over operating speed range
- 3. Performance test performed for roughly 24 test hours (roughly 15 test sequences)
- 4. Performance characterization ongoing

Turbo-Alternator Test Rig - DAS

Receiver/Dish Test Schematic

Solar Receiver Test Rig: prepared for dish test in April/May 2010